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In a seminal study, Scaiano and co-workeeyported that the
guenching by phenols of two ketone tripletsghbenzophenone
and w,t* 4-methoxypropiophenone, gave phenoxyl and ketyl
radicals efficiently (eqs 1 and 2). For phenk/10° M~1 s71
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1)

PhOH+ }[ArCOR]" — PhO + ArC(OH)R )
values for these n and zr,7* ketones were, respectively, 13 and
49 in benzene and 0.8 and 1.1 in wet acetonitrile. The lower rates
in wet acetonitrile were attributed to formation of a Ph®kblvent
hydrogen bond (HB).Carbonyls with lowestr,7* triplets were
known to abstract H-atoms from hydrocarbons much more slowly
than carbonyls having similar excitation energies with lowest n,
triplets, and Wagner et dlhad postulated that the,z* triplets
abstracted hydrogen predominantly via their thermally populated,
higher energy n* states. Later, Leigh et dlproposed that reactions
of phenols withsr,n* carbonyl triplets involved an intermediate
HB exciplex that gave phenoxyl and ketyl radicals by Electron
Transfer Proton Transfer (ETPT) (eq*).

PhOH+ JArCOR]* = [Ar(R)C=0-+-HOPh]* —

. _ ot .
3Ar(R)C—0--*HOPh]— ArC(OH)R+ *OPh  (3)
Kinetics of the bimolecular reactions of triplet ketones with

This independence has been verified many tifffeSuch KSEs
can bequantitatively described by eq 1§ whereoH andg, are
the Abraham et al.’§1! thermodynamically based constants
representing, respectively, the relative HB donor (HBD) ability of
solute XH in CC} [range= 0.00 (alkanes) te-1.0 (strong organic
acids)[? and the relative HB acceptor (HBA) ability of solute S in
CCl, [range = 0.00 (alkanes) to 1.00 (hexamethylphosphortria-
mide)]

log(gyy oM 1 s™) = log(kyyy /M s ™) — 8.3 B (1)

Equation Il correlates KSEs for H-abstractiéhy a variety of
Y* radicals from hydrocarbons, anilingrt-butyl hydroperoxide,
and numerous phendi$ (and other substrate¥).However, in
ionizing solvents (e.g., methanol), ionizable substrates (e.g., phenol)
react with electron-deficient radicals more rapidly than eq Il would
predict® This is due to fast electron transfer to' Yrom the
(generally low) concentration of Xanion present in equilibrium
with XH (eq 6). This Sequential Proton Loss Electron Transfer

XH+Y =H ' +X +Y' —=H' +X'+Y  (6)

(SPLETf30occurs in parallel with the “normal” H-abstractioeq
4). SPLET can usually be completely suppressed by the addition
of low concentrations of acetic actd?

phenols have usually been measured in a single solvent, there being 1,4 quenching of ther,7* triplet ketone, 2-benzoylthiophene

only a few reports of measurements in #@nd threé solvents.
This is unfortunate becausesgstematicstudy of kinetic solvent
effects (KSEs) for any H-atom abstractibeg 4

XH + Y*— X' + YH (4)

can provide important insights into the reaction mechanist(s).
Observed KSEs can be quantitatively accounted for by assuming
that only the (often small) equilibrium fraction (eq 5)

XH + S22 X1 oeS (5)
of XH molecules that are not making a HB to a HB acceptor (HBA)
solvent molecule, S, can react with {¢q 4), with a rate constant
Koy+ that is equal to the experimental rate constant in a non-
HBA solvent, such as with an alkane. The experimental rate constant
for H-abstractiofin S, kS«y+, is given by eq B°

Krrve = Kxrry /(1 + KZylSD) 0]

which also indicates that the ratio of experimental rate constants
in any pair of solvents will be independent of the reactivity ofY
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(®BT*), by a variety of substrates has been previously studied by
laser flash photolysis (LFP}21t was concluded that the phenol
+ 3BT* reaction involved a HB exciplex and gave the phenoxyl
(PhO) and BT ketyl (BTH) radicals by a (concerted) ETPT
mechanism with a quantum yield close to urfityHerein, we
address the question: Are the KSEs for this PhOHBT* HB
exciplex reaction correctly described by eq I1?

A pulsed Nd:YAG laserAex— 355 nm, 10 ns pulse, energy-15
17 mJ) was employed with [BT] chosen to give an absorbance of
0.35 ([BT] = 1.9-2.5 mM). The solvents (Table 1) were of the
highest purity available and were used as received. LFP of deaerated
solutions of BT gives théBT* absorption (maxima at 350 and
600 nm). TheéBT* decay was accelerated by the addition of PhOH
(in a dose-dependent manner) with the appearance of absorbancies
due to the ketyl (BT Amax= 350 and 580 nm) and PhQlmax=
380 and 410 nm) radicals, both being formed with a high efficiency
(Supporting Information). A plot of the logarithms of the rate
constants forPBT* quenching by phenolk, (Table 1), in the
solvents against the solvenf$™ values shows an excellent linear
correlation provided the point for solveRis ignored (as it should
be'4 Figure 1, solid line). The slope of this line is3.9, which is
significantly lower than the slope calculated from eq Il and phenol's
o, value of 0.59 [i.e., —8.3 x 0.59= —4.9 (Figure 1, dashed
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Table 1. Rate Constants for Quenching of *BT* by Phenol in unidentified fourth possible mechanism for intermolecular H-
Various Solvents with /2" Values for the Solvents abstractions from phenols by strongly oxidizing radicals and
no. solvent B ky/10° M5 nonradicals. Unimolecular (i.e., intramolecular) examples of this
1 n-CgHig 0.00 105+ 5 mechanism are known in chemistry and biol&glgut the only
g gr']*ﬁc'z %cﬁ 22?;:& 5 intermolecular example of phenol oxidation by this mechanism that
4 PhCHs 0.14 354+ 2 we are aware of involved an added solute as the proton acéeptor
5 PhOCH 0.26 11.3+ 0.5 and hence is not, strictly speaking, a KSE.
6 g:zg(NO)ochs o %:gi 02 In conclusion, a fourth mechanisrB, for H-atom abstraction
3 1,4-dioxane 0.47 19401 from phenol in PhOH-S HB complexes has been identified and
9 tetrahydrofuran 0.51 0.620.05 quantified. Although the mechanis® rate increased with the
10 (GH50)PO .77 0.13-0.04 solvents’ HBA strength £>7), the overall rate decreased Ag'
a From ref 115 Value of ky from ref 6a.¢ From ref 13b. increased. Nevertheless, the exciting possi_bility remains of “inverse”
KSEs where the rates of H-atom abstraction from a HBD actually
1 increase as the solvents become stronger HBAs.
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